×
[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。
# 参考は金先生のページ。感謝http://mjin.doshisha.ac.jp/R/
# 足立浩平 (2006). 多変量データ解析法――心理・教育・社会系のための入門―― ナカニシヤ出版の第2章から。感謝
mat <- matrix(c(3.2,3.4,3,3.2,4.2,4,4,3.7,3.6,3.6,3.7,3.4,3.2,3.2,2.7,3.5,3.2,3.2,4.6,4,4.8,4.6,4.3,3.6,3.2,3.7,3.2,3.8,3.7,3.4,3.5,3.5,4.5,3.8,3.9,4.1,3.7,3.5,3.7,3.5,3.6,3.8,2.8,2.5,2.2,2.6,3.1,3.4,3.5,3.4,2.9,3.5,3.9,3.1,2.9,2.8,2.6,2.2,2.1,2.5,3,3.2,3.8,4,3.5,4.2,4.7,2.7,2.2,2.3,2.6,2.6,2.2,2.6,3.2,3.1,3.7,4.1,3.6,4.2,4.7,2.4,2.5,2.4,2.2,3.2,3.3,3.6,2.8,2.4,3.2,4.3,4.7,3.5,4.9,2.3,3.3,3.9,1.4,2.1,3.4,2.9,3.3,1.5,2.1,3.4,4.2,3.5,3.5,1.8,3.3,2.5,1.7,3.6,4.1,4.2,4.1,1.6,2.6,3.5,4.1,3.7,4.2,2.3,3.4,4.7,3.3,4.1,3.4,3.2,4.5,3.7,3.7,4.2,3.9,3.5,3.7,3.3,2.8,3.9,3.8,4.7,1.3,1.5,2.3,3.9,3.6,4.4,3.7,2.5,2.8,2.9,1.8,2.3,1.8,4.2,4.3,4,4.9,3,4.5,4,5,3.5,4.1,3.3,4.3,4.3),
nr=14,
dimnames=list(c("僧侶", "銀行員", "漫画家", "デザイナー", "保母", "大学教授", "医師",
"警察官", "新聞記者", "船乗り", "プロスポーツ選手", "作家", "俳優", "スチュワーデス"),
c("立派な", "役立つ", "よい", "大きい", "力がある", "強い", "速い", "騒がしい", "若い", "誠実な",
"かたい", "忙しい"))
)
distdat <- dist(mat) # ユークリッド距離の算出
res.w <- hclust(distdat, method="ward") # ウォード法による分析
res.a <- hclust(distdat, method="average") # ウォード法による分析
# method引数のメモ
# signle: 最近隣法
# complete: 最遠隣法
# average: 群平均法
# centroid: 重心法
# median: メディアン法
# ward: ウォード法
# mcquitty: McQuitty法
summary(res.w) # リストオブジェクトの要素を確認するのみ
plot(res.w) # ウォード法樹形図の描画 図2.6A
plot(res.a) # 群平均法樹形図の描画 図2.6B
# kmeans法による非階層的クラスター分析はkmeans関数を用いる。そのうちやろう
# 足立浩平 (2006). 多変量データ解析法――心理・教育・社会系のための入門―― ナカニシヤ出版の第2章から。感謝
mat <- matrix(c(3.2,3.4,3,3.2,4.2,4,4,3.7,3.6,3.6,3.7,3.4,3.2,3.2,2.7,3.5,3.2,3.2,4.6,4,4.8,4.6,4.3,3.6,3.2,3.7,3.2,3.8,3.7,3.4,3.5,3.5,4.5,3.8,3.9,4.1,3.7,3.5,3.7,3.5,3.6,3.8,2.8,2.5,2.2,2.6,3.1,3.4,3.5,3.4,2.9,3.5,3.9,3.1,2.9,2.8,2.6,2.2,2.1,2.5,3,3.2,3.8,4,3.5,4.2,4.7,2.7,2.2,2.3,2.6,2.6,2.2,2.6,3.2,3.1,3.7,4.1,3.6,4.2,4.7,2.4,2.5,2.4,2.2,3.2,3.3,3.6,2.8,2.4,3.2,4.3,4.7,3.5,4.9,2.3,3.3,3.9,1.4,2.1,3.4,2.9,3.3,1.5,2.1,3.4,4.2,3.5,3.5,1.8,3.3,2.5,1.7,3.6,4.1,4.2,4.1,1.6,2.6,3.5,4.1,3.7,4.2,2.3,3.4,4.7,3.3,4.1,3.4,3.2,4.5,3.7,3.7,4.2,3.9,3.5,3.7,3.3,2.8,3.9,3.8,4.7,1.3,1.5,2.3,3.9,3.6,4.4,3.7,2.5,2.8,2.9,1.8,2.3,1.8,4.2,4.3,4,4.9,3,4.5,4,5,3.5,4.1,3.3,4.3,4.3),
nr=14,
dimnames=list(c("僧侶", "銀行員", "漫画家", "デザイナー", "保母", "大学教授", "医師",
"警察官", "新聞記者", "船乗り", "プロスポーツ選手", "作家", "俳優", "スチュワーデス"),
c("立派な", "役立つ", "よい", "大きい", "力がある", "強い", "速い", "騒がしい", "若い", "誠実な",
"かたい", "忙しい"))
)
distdat <- dist(mat) # ユークリッド距離の算出
res.w <- hclust(distdat, method="ward") # ウォード法による分析
res.a <- hclust(distdat, method="average") # ウォード法による分析
# method引数のメモ
# signle: 最近隣法
# complete: 最遠隣法
# average: 群平均法
# centroid: 重心法
# median: メディアン法
# ward: ウォード法
# mcquitty: McQuitty法
summary(res.w) # リストオブジェクトの要素を確認するのみ
plot(res.w) # ウォード法樹形図の描画 図2.6A
plot(res.a) # 群平均法樹形図の描画 図2.6B
# kmeans法による非階層的クラスター分析はkmeans関数を用いる。そのうちやろう
PR
Comment
Trackback
Trackback URL
Comment form