×
[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。
2章を忘れてた
# Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. Newbury Park, CA: Sage. (クレフト, I., デレウ, J. 小野寺孝義 (編訳) (2006). 基礎から学ぶマルチレベルモデル―入り組んだ文脈から新たな理論を創出するための統計手法 ナカニシヤ出版
# 第2章
以下のページを参考。感謝
http://blue.zero.jp/yokumura/R/multilevel/chap4.txt
http://www.ats.ucla.edu/stat/examples/imm/default.htm
library(foreign)
dat0 <- data.frame(read.spss("http://www.ats.ucla.edu/stat/spss/examples/mlm_imm/imm10.sav"))
names(dat0) <- tolower(names(dat0))
dat <- dat0[c(1,2,11,5)]
## 表2.1 学校内平均 p21
size <- as.vector(table(dat[1]))
dat.agmean <- aggregate(dat[c(3,4)], list(dat[,1]), mean)
tbl2.1 <- data.frame(school=1:10, size, dat.agmean[2:3])
tbl2.1
## 表2.2 散布度 共分散行列と相関係数 p21
by(dat[3:4], dat[1], function(x) cov(x)*((nrow(x)-1)/nrow(x)))
by(dat[3:4], dat[1], cor)
## 表2.3 10校の全体回帰 p24
summary(lm(math~1, dat))
summary(lm(math~homework, dat))
## 表2.4 10校の集計回帰 p24
summary(lm(math~1, dat.agmean, weights=size))
summary(lm(math~homework, dat.agmean, weights=size))
## 表2.5 10校に対する文脈モデル p25
dat$schid <- factor(dat$schid)
cx <- rep(dat.agmean[,3], size)
dat$cx <- cx
summary(lm(math~1, dat))
summary(lm(math~homework+cx, dat))
## 表2.6 10校のクロンバックモデル p26
dat$bw <- dat$homework-dat$cx
dat$bb <- dat$cx - mean(dat$homework)
summary(lm(math~1, dat))
summary(lm(math~bw+bb, dat))
## 表2.7 10校のANCOVAモデル p28 # 推定値に関しては教科書どおりの結果にならないが、基本的に切片からの差分が回帰係数とされているので問題なし、ということにしよう (predict(オブジェクト) でもいい) 。決定係数とかは同じ
lmres.null <- lm(math~schid, dat)
lmres.acv <- lm(math~schid+homework, dat)
summary(lmres.null)
summary(lmres.acv)
# Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. Newbury Park, CA: Sage. (クレフト, I., デレウ, J. 小野寺孝義 (編訳) (2006). 基礎から学ぶマルチレベルモデル―入り組んだ文脈から新たな理論を創出するための統計手法 ナカニシヤ出版
# 第2章
以下のページを参考。感謝
http://blue.zero.jp/yokumura/R/multilevel/chap4.txt
http://www.ats.ucla.edu/stat/examples/imm/default.htm
library(foreign)
dat0 <- data.frame(read.spss("http://www.ats.ucla.edu/stat/spss/examples/mlm_imm/imm10.sav"))
names(dat0) <- tolower(names(dat0))
dat <- dat0[c(1,2,11,5)]
## 表2.1 学校内平均 p21
size <- as.vector(table(dat[1]))
dat.agmean <- aggregate(dat[c(3,4)], list(dat[,1]), mean)
tbl2.1 <- data.frame(school=1:10, size, dat.agmean[2:3])
tbl2.1
## 表2.2 散布度 共分散行列と相関係数 p21
by(dat[3:4], dat[1], function(x) cov(x)*((nrow(x)-1)/nrow(x)))
by(dat[3:4], dat[1], cor)
## 表2.3 10校の全体回帰 p24
summary(lm(math~1, dat))
summary(lm(math~homework, dat))
## 表2.4 10校の集計回帰 p24
summary(lm(math~1, dat.agmean, weights=size))
summary(lm(math~homework, dat.agmean, weights=size))
## 表2.5 10校に対する文脈モデル p25
dat$schid <- factor(dat$schid)
cx <- rep(dat.agmean[,3], size)
dat$cx <- cx
summary(lm(math~1, dat))
summary(lm(math~homework+cx, dat))
## 表2.6 10校のクロンバックモデル p26
dat$bw <- dat$homework-dat$cx
dat$bb <- dat$cx - mean(dat$homework)
summary(lm(math~1, dat))
summary(lm(math~bw+bb, dat))
## 表2.7 10校のANCOVAモデル p28 # 推定値に関しては教科書どおりの結果にならないが、基本的に切片からの差分が回帰係数とされているので問題なし、ということにしよう (predict(オブジェクト) でもいい) 。決定係数とかは同じ
lmres.null <- lm(math~schid, dat)
lmres.acv <- lm(math~schid+homework, dat)
summary(lmres.null)
summary(lmres.acv)
PR
Comment
Trackback
Trackback URL
Comment form