忍者ブログ
×

[PR]上記の広告は3ヶ月以上新規記事投稿のないブログに表示されています。新しい記事を書く事で広告が消えます。


library(FactoMineR)
data (poison)
dat <- poison[,-c(1,2)]

# 各変数の度数
sapply(dat, table)

MCres <- MCA(dat, graph=F)
MCres
MCres$eig # 固有値と説明率
MCres$var$coord[,1:2] # カテゴリースコア。spssだと重心座標。符号が入れ替わる
MCres$var$eta2 # 判別測定
 colSums(MCres$var$eta2) # 判別測定の合計
MCres$ind$coord[,1:2] # 個人スコア。spssとは結構違う。
 # カテゴリースコアで数量化された

 # 個人プロット
plot.MCA(MCres,invisible=c("var","quali.sup"))
 MCres$ind$coord[23,1:2]

 # カテゴリープロット
plot.MCA(MCres,invisible="ind")

 # バイプロット
plot.MCA(MCres)

# 個体スコアについて

x <- as.vector(as.matrix(dat[1,]))
cs <- MCres$var$coord[,1:2] # カテゴリースコア
dm <- colSums(MCres$var$eta2) # 判別測定の合計

# 個体1のカテゴリースコア
cs[x[1],]
cs[x[2],]
cs[x[3],]
 # 全部足す
(cs[x[1],]+cs[x[2],]+cs[x[3],])/dm[1:2] # spssではこれ
MCres$ind$coord[1,1:2]
 # 個体スコアの計算方法が異なることがわかる

# そろそろspssを気にしないことにしよう

PR
Comment
Trackback
Trackback URL

Comment form
Title
Color & Icon Vodafone絵文字 i-mode絵文字 Ezweb絵文字  
Comment
Name
Mail
URL
Password
プロフィール
HN:
tao
HP:
性別:
非公開
職業:
会社員
趣味:
アウトドア、自転車、ジョギング、英語学習
自己紹介:
・千葉在住のサラリーマンです。データ分析っぽいことが仕事。
・今年英検1級取得。今はTOEIC高得点を目指して勉強中。
・興味のあることは野球、アウトドア、英語学習、統計、プログラミング、PC関係などなど。
ブログ内検索
freead
順位表
プロ野球データFreak
セリーグ順位表
パリーグ順位表